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Introduction
Epigenetics is the study of mitotically and/or meiotically heritable 

changes in gene function that are not explained by changes in DNA 
sequence [1]. Epigenetic structural adaptations represent changes 
in chromosomal regions for registering, signaling, or perpetuating 
altered activity states [2]. T ose heritable changes in genome function, 
occurring without DNA sequence alteration, involve transference of 
gene expression patterns not only during the life of a cell, but also over 
cell generations. Te alteration of gene expression is environment-
induced, and it occurs during cell differentiation. In other words, non-
genetic factors induce the genes to “express themselves” differently [3]. 
Tus, epigenetics provides a possible interface between the genetic and 
environmental factors that in combination produce the phenotype. 
One operational definition of epigenetics [4] involves: (a) an epigenator, 
originating from the environment and triggering the epigenetic 
pathway, (b) an epigenetic initiator, receiving the signal from the 
epigenator and capable of determining the precise chromatin location 
and/or DNA environment for the establishment of the epigenetic 
pathway, and (c) an epigenetic maintainer, functioning to sustain the 
chromatin environment in the initial and succeeding generations. Te 
persistence of the chromatin milieu may require cooperation between 
the Initiator and the maintainer.

Consideration of the early life programming and transcriptional 
regulation in adult exposures supports a serious need to understand 
epigenetic mechanisms as a critical determinant in disease 
predisposition. It is important, therefore, to combine the latest insights 
gained from clinical and epidemiological studies with potential 
epigenetic mechanisms derived from basic research [5]. Moreover, as 
the significance of epigenetics for neuropsychiatric disorders unfolds 
with a plethora of descriptive and causal analyses that demonstrate 
the complexity surrounding etiopathogenesis in each disease state, 
it becomes increasingly necessary to identify certain consistently 

emerging aspects of individual liability [6]. Because of limitations 
inherent in studying human brain samples, many well-designed studies 
linking epigenetics to behavioral phenotypes employ non human 
animal models. Also, limitations of brain specimen assays and analyses 
have led to the nearly exclusive application of peripheral blood samples 
or buccal swabs. In the former, the epigenome of the different cells with 
a distinctive DNA methylome is measured, implying that any variation 
in cell composition, e.g., due to infection, may lead to epigenetic changes 
that reflect only a shift in cell populations. Much care must be pursued 
in drawing causal relations between behavioural representations and 
epigenetics on the basis of peripheral tissues. In other words, one must 
be cognizant of limitations of studying the epigenome in the context 
of behavioural attributes, expressions, and outcomes. Ideally, the 
validation of any such research would incorporate the simultaneous 
analysis of epigenetic patterns in blood samples and brain structures in 
a selected animal model under different conditions. 

Epigenetics helps to reveal processes through which inherited 
characteristics and environmental influences shape individual 
substrates through a variety of mechanisms. Tese epigenetic 
mechanisms affect both brain structure and function involved in 
neurodevelopment, neuronal activity, and neurocognitive processes. 
Tus, epigenetic regulation affects a multitude of structural entities that 
determine electrochemical processes in the body: neural differentiation 

*Corresponding author: Kenneth Blum, Department of Psychiatry, University of 
Florida, College of Medicine, PO Box 103424, Gainesville, Florida 32610-3424, 
USA, Tel: (352)392-3681; Fax:(352) 392- 9887; E-mail: Drd2gene@aol.com

Received March 17, 2012; Accepted May 28, 2012; Published May 30, 2012

Citation: Archer T, Oscar-Berman M, Blum K, Gold M (2012) Neurogenetics and 
Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry. J Genet Syndr 
Gene Ther 3:115. doi:10.4172/2157-7412.1000115

Copyright: © 2012 Archer T, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward 
Circuitry
Trevor Archer1, Marlene Oscar-Berman2, Kenneth Blum3* and Mark Gold3

1Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
2Departments of Psychiatry, Neurology, and Anatomy and Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
3Department of Psychiatry, University of Florida College of Medicine, and McKnight Brain Institute, Gainesville, FL, USA

Abstract
Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic 

regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over 
time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, 
such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms 
are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular 
behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects 
the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic 
neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive 
impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature 
birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, 
paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several 
neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that 
determine structure and function in resolving the final behavioral expressions.

http://dx.doi.org/10.4172/2157-7412.1000115


Citation: Archer T, Oscar-Berman M, Blum K, Gold M (2012) Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry. J 
Genet Syndr Gene Ther 3:115. doi:10.4172/2157-7412.1000115

Page 2 of 15

Volume 3 • Issue 3 • 1000115
J Genet Syndr Gene Ther
ISSN:2157-7412 JGSGT an open access journal 

[7], astrocytic differentiation [8], oligo dendrocytic differentiation 
[9], adult neurogenesis [10,11], synaptic plasticity [12,13], and neuro 
protection against apoptosis [14] and neuronal excitotoxicity [15], and 
maintenance of neuronal identity [16]. 

Gräff et al. [17] have reviewed the implications of epigenetic 
mechanisms that modulate physiological and pathological brain 
processes. Tey described the necessity to disentangle regional and 
cell-type specific epigenetic codes in given environments. During both 
the prenatal and postnatal periods, for example, an individual’s early 
environment determines the extent of stress resistance that he/she is 
capable of, thereby constituting the level of stress vulnerability and 
eventual inappropriate stress coping for that individual [18,19]. In the 
search for epigenetic mechanisms regulating loss of impulse control 
by individuals, brain signaling and activity relations in disorders 
characterized by impulsiveness provide a basis for examination [20].

Genetically mediated variability, currently mapped onto 
trajectories for psychopathology risk or healthy quality-of-life, whether 
precipitated by environmental adversity [21] or optimized by health-
promoting interventions [22] defines the biological pathways that give 
rise to phenotypic expressions of individual differences. A variety of 
exogenous or endogenous perturbations during early development may 
impact upon epigenetic alterations of gene expression thereby altering 
the developmental trajectory of an individual’s brain. For example, 
maternal diet may program offspring growth and metabolic pathways 
thereby instigating a lifelong susceptibility to cognitive or emotional 
problems and diabetes leading to obesity [23-25]. Moreover, maternal 
psychosocial experiences [26,27] can induce programming effects on 
the developing offspring’s brain. Environmental factors, primarily 
during early development, are crucial to the establishment of stable 
but reversible changes that alter the transcriptional expression and are 
transgene rationally heritable, with potential concomitant effects on 
the development of eating disorders and body weight control. Stress 
during the early-life period, such as physical maltreatment arising from 
abuse or bullying, induces long-lasting effects on the hypothalamic-
pituitary-adrenal axis (HPA) and is associated with blunted HPA 
reactivity in adulthood as described by evidence from human and 
nonhuman animal studies [28]; these types of stress are both chronic 
and acute, and are traumatic. 

Tese adverse childhood experiences are linked to persistent 
changes in stress-related systems and brain regions involved in mood, 
cognition, and behavior. For example, Oullet-Morin et al. [29] have 
observed that bullied and nonbullied discordant monozygotic twins 
showed distinct patterns of cortisol secretion following a psychological 
stress test. It was found that bullied twins exhibited a blunted cortisol 
response compared with their non-bullied discordant monozygotic co-
twins, who showed the expected increase. Tis difference in cortisol 
response to stress could not be attributed to the children’s genetic 
makeup, their familial environments, pre-existing and concomitant 
individual factors, or the perception of stress and emotional response 
to the psychological stress test. Te authors interpreted these results as 
providing evidence for a causal effect of adverse childhood experiences 
(bullying) on the neuroendocrine response to stress. Nonetheless, 
to what extent the causal effects of early stressful experiences are 
responsible for the physiological response to stress in individuals 
remains to be clarified, since the impact of these experiences awaits 
the study of interactive genetic and shared environmental influences.

Impulsive behaviors

Impulsiveness is a personal attribute characterized by the 
individual’s tendency to engage in behaviors without adequate 
forethought as to the consequences of the actions. Impulsive individuals 
act upon impulses on the spur of the moment rather than after 
considered thoughts; the behaviors appear motivated by or the result 
of impulses. Impulsive behaviors may be expressed through positive or 
negative urgency, the tendency to act rashly while in a positive or in a 
negative mood. Impulsiveness is associated with instability in cognitive 
and emotional domains, leading to behavioral problems in several 
different neuropsychiatric conditions [30]. Cosi et al. [31] have shown 
that impulsiveness was related to estimations of anxiety, depression, and 
aggressive behavior in children between 9 and 13 years. Tey observed 
higher relationships with measures of internalizing symptoms than 
with aggression. Motor impulsivity, a component of impulsivity related 
to inhibition deficits, was the component most related to anxiety and 
depression. Cognitive impulsivity, on the other hand, was negatively 
related to anxiety and depression. 

Te relationships observed between impulsivity and symptoms 
of internalizing disorders support notions that impulsivity ought to 
be considered not only in externalizing problems, but also in affective 
disorders in children and adolescents. Using self-report instruments 
(Barratt Impulsiveness Scale, BIS; Zimbardo Time Perspective 
Inventory, ZTPI), Wittmann et al. [32] studied the influence of 
impulsiveness on brain activation patterns measured by event-related 
functional magnetic resonance imaging (fMRI) during the encoding 
and reproduction of intervals with durations of 3, 9 and 18 seconds. 
Te 27 participants included 15 high impulsive subjects according to 
their self-rating. Brain activations during the duration reproduction 
task were correlated with measures of impulsiveness. Brain activations 
during the reproduction phase of the timing task were significantly 
correlated with reproduced duration, as well as with BIS and ZTPI 
subscales. Tese were linked to motor execution as well as to acore 
control network that encompass the inferior frontal and medial 
frontal cortices, the anterior insula, as well as the inferior parietal 
cortex. Te greater activation in these regions, the shorter was the 
reproduced intervals, the more impulsive was an individual, and the 
less pronounced was the future perspective.

As noted earlier, epigenetics describes the study of heritable 
changes in genome function without DNA sequence alteration. 
Cellular differentiation provides an example of epigenetic change, 
and epigenetic regulation of gene expression affects diverse processes 
such as brain development and differentiation, plasticity, neuron 
maintenance, and survival. Transgenerational epigenetic inheritance 
is present in widely differing species [33-35]. Terefore, nonhuman 
animal laboratory modelshave offered insights that may define and 
elucidate symptom profiles and causal relationships in epigenetic 
regulation of gene expression [36,37]. For example, Zhang and 
Meaney [38], in their review of studies that originated from rodent 
models, described how environmental signals activate other signals 
that remodel directly the “epigenome,” thereby leading to changes 
in gene expression and neural function during early and adult life. 
Weaver [39] described evidence from human and nonhuman animal 
studies investigating the associations between early life experiences 
(including parent-infant bonding), HPA activity, brain development, 
and health outcome. Tis evidence provides important clues into the 
neurobiological mechanisms that mediate the contribution of stressful 
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experiences to personality development and the manifestation of 
illness.

Adverse fetal and early life conditions are associated with 
disturbances in normal brain development that may or may not be 
expressed through disorders evolving primarily from loss of planning 
ability and impulse control [40]. Te developmental origins of health 
or ill-health involving life-history transitions present placental, 
nutritional, and endocrine cues for setting long-term biological, 
mental, and behavioral strategies in response to local ecological or social 
conditions. Epigenetic responses to environmental changes, exerted 
during life-history phase transitions, emerge through the window of 
developmental plasticity, from preconception to early childhood; these 
influence development, cell- and tissue-specific gene expression, and 
risk for disorder status at child and adult levels [41].

Adverse fetal and early life conditions that disturb normal brain 
development are associated with neuropsychiatric disorders, epigenetic 
consequences emerging to early expression [42,43]. Tis early life 
adversity affecting adolescent and adult behaviour reflects the putative 
epigenetic mechanisms through which early life environmental 
influences determine life-long susceptibility to chronic disease states 
[44,45]. Specific expression of a disorder (e.g., psychosis) integrates 
the relationship between adverse events during childhood and the 
disease state with epigenetic processes involving stress-regulating 
functions of the HPA and the neurobehavioral mechanisms through 
which specific types of childhood trauma may lead to specific types of 
(psychotic) experiences [46]. It is noteworthy, despite its complexity, 
the application of treatment drugs that modify the genome (e.g., DNA 
methyl transferase inhibitors and histone deacetylase inhibitors) for 
disorder-related deficits emphasises the significance of epigenome 
targeting [47]. When the action of one gene is modified by the actions of 
one or several other “modifier” genes, epistasis occurs. Epistatic genes 
have their phenotype expressed, while hypostatic genes have altered 
or suppressed phenotypes with the strength and form of epistasis, 
an important determinant of disorder propensity [48]. Genetic 
epistasis offers plausible mechanisms for the etiopathogenesis of 
neurobehavioral attributes, such as neuropathological impulsiveness, 
that contribute to neuropsychiatric disorders [49,50]. Measurable 
endophenotypes, both as neuropsychiatric concepts and biomarkers, 
indicate a point on the pathway between gene to disorder, linked to 
expressed abnormality, that is reflected in clinically unaffected relatives, 
vulnerability polymorphisms, and the cognitive-emotional domains 
[51]. Taken together, the relative contributions of endophenotypes 
and epistasis in the mediation of epigenetic phenomena may prove 
essential to diagnosis, intervention, and prognosis [52].

Epigenetic implications modulating impulsiveness

Adverse early-life circumstance is associated with disturbances in 
normal brain development [43], with maternal care influencing HPA 
stress responses through tissue-specific effects on gene transcription 
and epigenetic regulation of glucocorticoid receptor expression [53-
55]. Early-life social and environmental stressors, such as childhood 
abuse, neglect, poverty, and poor nutrition, have been associated 
with the emergence of mental and physical illness (i.e., anxiety, mood 
disorders, poor impulse control, psychosis, and drug abuse. Increased 
risk for neuropsychiatric disorders, involving emotional dysregulation, 
cognitive inadequacy, and vulnerability for impulsiveness are linked to 
altered HPA stress responses [56,57]. McGowan et al. [58] examined 
epigenetic differences in a neuron-specific glucocorticoid receptor 
(NR3C1) promoter between post mortem hippocampus taken from 

suicide victims with or without a history of childhood abuse. Te 
victims who were abused, i.e., through sexual contact, severe physical 
abuse, or severe neglect (n = 12), were compared with suicide victims 
without childhood abuse (n = 12), and control subjects (n = 12). Results 
for the childhood-adversity suicide victims showed reduced levels of 
glucocorticoid receptor mRNA, reduced mRNA transcripts bearing 
the glucocorticoid receptor 1F split variant, and increased cytosine 
methylation of an NR3C1 promoter. Additionally, patch-methylated 
NR3C1 promoter constructs that mimicked the methylation state in 
the childhood-adversity suicide victims’ samples expressed reduced 
NGFI-A transcription factor binding and NGFI-A-inducible gene 
transcription. 

In this regard, the regulation of HPA axis activity and hippocampus-
linked cognitive functioning bears reflection: Khalili-Mahani et al. [59] 
conducted a fMRI study using tasks known to involve the hippocampal 
formation comparing stress-responders and non-responders. It was 
found that the former showed significant differences in hippocampal 
activation already prior to stress, with higher levels of hippocampal 
activity and cortisol during the cognitive tasks, suggesting states 
of hippocampal activation prior to stress might reflect states of 
vigilance or anxiety. Canli et al. [60], investigating neural correlates 
of epigenesis, indicated that early-life stress interacts with the effect of 
serotonin transporter genotype on amygdala and hippocampus resting 
activation, thereby modulating stress and affective states (see also [61]). 
Quirin et al. [62] have indicated that the HPA system and hippocampus 
are programmed during critical development periods, establishing 
a certain trajectory of physiological responsiveness throughout life. 
Finally, Lahiri et al. [63] have proposed a “latent early-life associated 
regulation” (LEARn) model that assigns the latent changes in expression 
of specific genes. Te model posits that epigenetic perturbations 
primed initially through disturbing environmental events during early-
life development, at long-term regulation, produce a neuropathology 
only later in the life cycle. Tus, genetic and environmental risk factors 
contribute to the etiopathogenesis of brain disorders all of which 
express symptoms that, to greater or lesser extent, are affected by 
dysregulation in the control of impulsive behaviors [64].

Impulsiveness and gene polymorphisms

Te notion of impulsiveness incorporates a multidimensional 
construct consisting of a range of inter-related factors that include 
novelty-seeking and reckless behavior, lack of planning ability and self-
control, with or without aggressiveness, that have associations with 
various psychopathologies [64-66]. Regression analyses based upon 
several self-report questionnaire studies including a range of cognitive-
emotional personal attributes have indicated that impulsiveness is 
predicted by negative effect, a motivation, and depressiveness, and 
counter predicted by positive affect and internal locus of control, in 
healthy volunteers comprised of adult working populations, students, 
and adolescents [30,67,68]. It appears that the inability to plan future 
decisions and subsequent actions presents a critical component of 
impulsiveness expressed in male offenders classified as both non-
psychopathic and psychopathic [69], euthymic and depressed bipolar 
patients, depressed unipolar patients, and healthy controls [70], as 
well as in male forensic psychiatric in-patients facing severe criminal 
charges [65]. Individuals whose behavior is determined by high levels of 
impulsiveness show impairments over a wide range of neurocognitive 
tasks including tests of executive functioning [71-73], cognitive tasks 
demanding response control [74,75], and cognitive flexibility (verbal 
fluency) [76]. An individual’s control of choice and decision-making 
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processes seems to be modulated largely by the eventual consequences 
of affective and cognitive appraisals with reinforcement or avoidance of 
actions directed by the underlying neural circuits [77-80]. Functional 
gene variants have putative influence on the neural mechanisms of 
disorders relating to impulsive control, such as functional variants in 
the serotonin transporter gene 5-HTTlPR [81,82].

Serotonergic systems are involved in neuropsychiatric disorders 
[83] and regulate the functional domains of cognition and emotion 
[84]. Both impulsiveness and aggressiveness are associated with 
serotonergic system functioning [85,86], which may be viewed as 
traits with complex genetic architecture that is complicated further 
by epistasis [87], epigenesis [88,89], gender moderation, and ethnicity 
[90]. In order to investigate the association between the C(-1019)G 
functional polymorphism, regulating the HTR1A gene expression, and 
impulsiveness, Benko et al. [91] applied the Impulsiveness subscale 
(IVE-I) of the Eysenck Impulsiveness, Venturesomeness and Empathy 
Scale and the Barratt Impulsiveness scale (BIS-11) to a Hungarian 
population sample of healthy community-based volunteers (n = 
725, 596 females). Te C (-1019) G genotype groups, GG versus GC 
versus CC, showed significant differences: GG type subjects showed 
significantly higher impulsiveness on the IVE-I scale, for motor and 
cognitive impulsiveness, and for the total impulsiveness score on the 
BIS-11 scale. Te authors suggested that the receptor gene, HTR1A, 
expression was involved in a continuum phenotype of impulsiveness. 

Other studies have demonstrated links between serotonergic gene 
polymorphisms, health-hazard behaviours, and impulsiveness [92]. 
In a predominantly Caucasian (95%) student population (n = 200, 
62% female), Stoltenberg and Nag [93] used a mathematical model of 
genetic control of presynaptic serotonergic function and genotyping 
of the TPH2 intron-8 (rs1386483) polymorphism and the MAOA 
u-VNTR amplification to show that simulated levels of CSF-5HIAA 
levels were correlated negatively with BIS-11 total scores. Pathological 
gambling, risky-choice behaviour, and faulty decision-making due 
to impulsiveness were all associated with alterations in serotonergic 
functioning [94-97], and alterations to 5-HT transporter 5HTTLPR 
polymorphism [98,99]. Juhasz et al. [100] found that only the TPH2 
haplotype of the TPH2, TPH1, SLC6A4, and HTR1A serotonergic 
gene polymorphisms was linked to risk behaviour assessed with a 
probabilistic gambling task in a population cohort of 1035 individuals. 
Tey observed that carriers of the more prevalent TPH2 displayed lower 
risk-taking on the cognitive tasks involved with no links between the 
functional polymorphisms in the TPH1, SLC6A4, and HTR1A genes 
and risk behaviour. Despite the marked in-roads to gene marking in 
both patient and healthy volunteer subjects, the genetic links between 
impulsiveness, whichever the means to assess this behaviour, and 
the serotonergic pathways suggest the implication, rather than the 
conclusive involvement, in the condition.

Impulsiveness, aggressiveness, and problems concerning 
behavioural inhibition, e.g., substance abuse, seem, according to the 
emerging scenario, inherent to several disorders, including attention 
deficit hyperactive disorder (ADHD) and borderline personality 
disorder, that involve impaired neuropsychological functioning and 
emotional dysregulation [101] and fit the concept known as Reward 
Deficiency Syndrome [102-104]. Reif et al. [105,106] have shown that 
a polymorphic promoter dinucleotide repeat length variation of the 
NOS1 gene (NOS1 Ex1f-VNTR) may hold functional significance, with 
associations of the polymorphism to clinical traits of impulsiveness 
[106]. Retz et al. [107] have examined the association between self-

reported impulsiveness, venturesomeness, and empathy in 182 adult 
male (young-middle aged), Caucasian offenders referred to forensic 
psychiatric medicine. Te authors assumed that impulsiveness and 
ventures omeness presented closely related negative facets, while 
empathy involved positive facets of moral reasoning, prosocial 
behaviour, and control of aggression [108,109]. Tey observed that 
impulsiveness was associated significantly with NOS1 Ex1f-VNTR and 
violent behaviour, as well as childhood ADHD symptoms, whereas 
venturesomeness showed only a strong tendency to the same. Empathy 
was associated significantly with NOS1 Ex1f-VNTR but not violent 
behavior or childhood ADHD symptoms. Jacob et al. [110] studied 
the interactions of serotonergic candidate genes (5-HTT, HTR1A, 
and TPH2) with burden of life events in 183 patients with personality 
disorders and 123 patients with adult ADHD. Tey found that only the 
G allele of HTR1A rs6295 increased risk for erratic emotional-dramatic 
Cluster B personality disorders, but increased the risk for the anxious-
fearful Cluster C personality disorders, thereby indicating that gene 
effect was modified by stressful life events, or vice versa. 

ADHD is discussed often on the basis of neurodevelopmentally-
inappropriate attentional problems, motor hyperactivity, and 
impulsiveness that emerge in early-life with disruptions of social 
and academic functioning. ADHD presents a disorder characterized 
by marked levels of impulsiveness [111,112], that persists over the 
individual’s lifespan [113-115]. Te relevance of epigenetic mechanisms 
for ADHD etiopathogenesis has been discussed [20,116]; chromosome 
organization, DNA methylation and transcriptional factors all 
contribute to the pathophysiology of the disorder [117]. Environmental 
risk factors for high trajectories of impulsivity-hyperactivity and 
inattention symptoms were premature birth, low birth weight, prenatal 
tobacco exposure, non-intact family, young maternal age at birth of 
the target child, paternal history of antisocial behavior, and maternal 
depression [118] all of which are clear-cut examples of environmental 
adverse conditions. Maternal-infant relationships and the social rearing 
context exert exceedingly profound effects on laboratory animals’ 
emotional reactivity, responses to stress and central levels of BDNF 
[119]. Whereas reductions/deficits in BDNF are associated invariably 
with neuropsychiatric disorder conditions [6,120], Chan et al. [22] 
have observed that advantageous environmental conditions, including 
fruit intake (higher levels), exercise (higher levels), and television-
watching frequency were associated with serum BDNF concentrations 
in 85 healthy individuals.

Despite much evidence implicating the interactions of serotonergic 
candidate genes, not all the results available follow the general trends 
with regard to diagnosed conditions (e.g., ADHD) with impulsiveness 
as a major symptom. For example, genotype-tagged all common 
variants within TPH1 and TPH2 genes in a Norwegian sample of 
451 adult ADHD patients and 584 healthy controls, together with a 
meta-analytic sample of 1,636 ADHD cases and 1,923 controls, but 
failed to obtain consistent evidence of a substantial effect of common 
genetic variants on persistent ADHD. Using hierarchical linear 
regression analysis on a sample of 404 youths, Nikolas et al. [121] 
obtained significant 5HTTLPR x Self-Blame interactions for ADHD 
symptoms, concluding that both high and low serotonergic activity 
were risk factors for ADHD when linked with psychosocial distress in 
relation to inter-parental conflict. Perinatal stress or infection, and/or 
maternal affective disorder that influence attachment are implicated 
in the epigenetic mechanisms expressed in long-lasting changes to the 
HPA axis [122]. Emotional dysregulation, expressed in ADHD and 
trait-related disruptive disorders as a central aspect [123], progresses 
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through epigenesis from temperamental difficulties in infancy to 
problems of impulse control in childhood to substance use debut, with 
comorbid aggressive-impulsivity [124] in adolescence and eventually 
severe substance abuse and criminality in young adulthood [125,126]. 

Disinhibition involves the lack of restraint manifested through 
several expressions of maladaptive behaviors, including disregard for 
social conventions, impulsiveness, and poor risk assessment. It affects 
motor, instinctual, emotional, cognitive, and perceptual aspects with 
signs and symptoms similar to the diagnostic criteria for manic bouts. 
Hypersexuality, hyperphagia, and aggressive outbursts are indicative 
of disinhibited instinctual drives. Disinhibited individuals demonstrate 
reduced capacity to modulate their immediate impulsive responses 
to given situations. Flory et al. [127] have presented evidence of an 
association between functional variation in the prodynorphin (PDYN) 
gene and a dimensional measure of disinhibited behavior. A 68bp 
sequence in the core promoter region of the PDYN gene was genotyped 
in a community sample of 1021 adults aged 30-54. Participants were 
interviewed for lifetime history of DSM-IV alcohol dependence 
and completed two self-report measures of sensation seeking and 
impulsiveness. Fifteen percent (n=151) of the sample met DSM-IV 
criteria for alcohol dependence, and while results did not support an 
association between the PDYN polymorphism and the diagnosis of 
alcohol dependence, they did show an association between the low 
expressing L allele of the PDYN gene and a preference for engaging in 
disinhibited behavior. Additionally, people who had both a history of 
alcohol dependence and higher scores on this Disinhibited Behavior 
scale were most likely to carry an L allele. Tese results indicated that 
variation in the PDYN gene is associated with a dimensional trait or 
intermediate phenotype that reflects a preference for heavy drinking 
and engaging in related risky behaviors (e.g., drug use, sexual activity). 
Tis work is in agreement with earlier work showing the important 
relationship between opioid peptides and alcoholism [128] and alcohol 
preference in genetically bred rodents [129]. 

Gaming

Behavioral addictions, especially pathological gambling and 
Internet addiction, have become a growing concern in research and 
for formulating health policy. Pathological gambling is an impulse 
control disorder with a suggestive genetic vulnerability component. 
Pathological gambling has been termed both the pure and the hidden 
addiction: Pure because it is not associated with the intake of any 
addicting substance, and hidden because it is an extension of a common, 
socially accepted behavior. It has been established in the United States 
that the estimate of the proportion of variation in liability for a gambling 
disorder due to genetic influences was 49.2%. Moreover, there has 
been no evidence for shared environmental influences contributing to 
variation in liability for a gambling disorder, nor for quantitative or 
qualitative gender differences in the causes of variation in such liability 
[130,131]. Among the German population, the estimated prevalence of 
pathological gambling is 0.2-0.5%, and these numbers are comparable 
to prevalence rates reported for illegal drug dependency. Tus, about 
1.5 million people, i.e., 3% of the German population, are believed to 
be at risk of Internet addiction [132]. 

Comings et al. [133] were the first to report highly significant 
results that related pathological gambling to variants of the dopamine 
D2 receptor gene. Moreover, there are similarities between behavioral 
addictions and substance dependency. Te Taq A1 variant of the human 
DRD2 gene has been associated with drug addiction, some forms of 
severe alcoholism, and other impulsive, addictive behaviors. According 

to Comings et al. [133], of a sample of 171 pathological gamblers, 50.9% 
carried the D2A1 allele versus 25.9% of 714 known non-Hispanic 
Caucasian controls screened to exclude drug and alcohol abuse. For the 
102 gamblers who filled out the questionnaires, 63.8% of those in the 
upper half of the Pathological Gambling Score (more severe) carried 
the D2A1 allele, compared to 40.9% in the lower half (less severe). Of 
those who had no co morbid substance abuse, 44.1% carried the D2A1 
allele, compared to 60.5% of those who had co morbid substance abuse. 
Forty-eight controls and 102 gamblers completed a shorter version of 
the Pathological Gambling Score. Of the 45 controls with a score of 
zero, 17.8% carried the D2A1 allele. Of the 99 gamblers with a score 
of 5 or more, 52.5% carried the D2A1 allele. Te authors suggested 
that genetic variants at the DRD2 gene play a role in pathological 
gambling, and support the concept that variants of this gene are a 
risk factor for impulsive and addictive behaviors. Tis work has been 
consistently confirmed by others and most recently by Lobo et al. [134] 
who evaluated the association of genetic variants in the dopaminergic 
receptor genes (DRD1-3s) with risk for gambling in healthy subjects 
using the Canadian Problem Gambling Index (CPGI). Healthy 
Caucasian subjects who had gambled at least once in their lifetime 
(n=242) were included in the analysis. Gender was not associated with 
the CPGI, while younger age was associated with higher CPGI scores. 
Tey have found that none of the single polymorphisms investigated 
on DRD1 and DRD3 were associated with CPGI scores in healthy 
subjects. However, in support of Comings earlier work, they observed 
trends for association on the TaqIA/rs1800497 polymorphism and the 
haplotype flanking DRD2 (G/C/A), thereby providing further evidence 
for the role of dopamine D2-like receptors in addiction susceptibility.

Additional research has supported the view that Internet addiction 
is associated with abnormalities in the dopaminergic brain system. [135] 
using PET imaging showed reduced levels of dopamine D2 receptor 
availability in subdivisions of the striatum including the bilateral 
dorsal caudate and right putamen, in subjects with Internet addiction. 
Results from our laboratory have suggested that dopamine agonist 
therapy instead of dopamine blockade seems more parsimonious 
[136]. Moreover, Han et al. [137] reported that the weak inhibitor of 
dopamine — a nor epinephrine reuptake Bupropion sustained release 
— after a six week period induced a decrease in craving for Internet 
video game play, total game play time, and cue-induced brain activity 
in dorsolateral prefrontal cortex. Tis effect is similar to similar to other 
addictions due to reward circuitry impairments.

In one study by Lee et al. [138], a group of excessive Internet users 
had higher SS-5HTTLPR frequencies, harm avoidance, and Beck 
Depression Inventory scores than control subjects. SS-5HTTLPR 
expression was closely related to harm avoidance in the excessive 
Internet users. Te results of this study suggested that excessive Internet 
users may have genetic and personality traits similar to depressed 
patients.

Aggression

Human aggression and impulsivity-related traits have a complex 
background that is greatly influenced by genetic and non-genetic 
factors [139]. It is well known that the dysfunction of neural circuits 
responsible for emotional control represents a causal factor of 
violent behaviors. Dysfunctional brain areas responsible for violent 
antisocial behavior and psychopathology include the frontal and 
temporal lobes, especially orbital and medial frontal regions (anterior 
cingulate cortex) and the amygdala [140]. Excessive reactivity in the 
amygdala coupled with inadequate prefrontal regulation serves to 
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increase the likelihood of aggressive behavior in both adolescents and 
adults. Developmental alterations in prefrontal-subcortical circuitry 
as well as neuromodulatory and hormonal abnormalities play a role. 
Accordingly, it has been exposed that imbalance in testosterone/
serotonin and testosterone/cortisol ratios (e.g., increased testosterone 
levels and reduced cortisol levels) increases the propensity toward 
aggression because of reduced activation of the neural circuitry of 
impulse control and self-regulation. 

Te main biological systems that are known to be involved 
are certain reward neurotransmitters including: serotonin, opioid 
peptides, gamma-aminobutyric acid, and the catecholamines 
(dopamine and norepinephrine), which can become disturbed 
through epigenetic influences. Chen at al. [141] hypothesized that 
pathological aggression, a complex behavioral disorder, in adolescents 
may in part involve polymorphisms of the dopaminergic system. 
While a number of neurotransmitter systems must be involved, due 
to polygenic inheritance, there is increasing evidence that one major 
pathway deserving special consideration is the dopaminergic system. 
Importantly, however, advances in our knowledge of the neurobiology 
of aggression and violence have given rise to rational pharmacological 
treatments for these behaviors. 

It is our notion that pathological aggressive behavior has, at least 
in part, similar underlying biological underpinnings to other forms of 
impulsive behaviors such as pathological gambling. By analogy to drug 
dependence, it has been speculated that the underlying pathology in 
pathological gambling is a reduction in the sensitivity of the reward 
system. While studying pathological gamblers and controls during a 
guessing game using fMRI, Reuter et al. [142] observed a reduction 
of ventral striatal and ventromedial prefrontal activation in the 
pathological gamblers that were negatively correlated with gambling 
severity. Subsequently, linking hypo activation of these areas to 
disease severity. A positive correlation of both the DRD2 gene and the 
dopamine transporter gene (DAT1) polymorphisms were observed 
with pathological violence in adolescents in a blinded clinical trial. 
Tus, this and other cited works suggest a role both for the DRD2 
and the DAT genes in pathological aggressive behavior. Chen et al. 
[141] hypothesized that pathological aggression, a complex behavioral 
disorder, in adolescents may in part involve polymorphisms of the 
dopaminergic system. Hefurther hypothesized that follow-up gene 
research in this area, albeit premature, resulting in confirmation of 
positive correlations with dopaminergic polymorphisms, and utilizing 
highly screened controls (eliminating any addictive, compulsive, 
and impulsive behaviors in both proband and family) may have 
important ramifications in our young population. Tis concept has 
been confirmed by additional work by Vaske et al. [143] showing that 
offenders, on average, are more likely to be violently victimized than 
non offenders. Teir study used data from the National Longitudinal 
Study of Adolescent Health to investigate whether variants of a 
polymorphism in the dopamine D2 receptor gene (DRD2) distinguish 
between offenders who are violently victimized and offenders who are 
not violently victimized. Te results showed that offenders who are 
violently victimized are more likely to carry the DRD2 (A1) risk allele 
than offenders who have not been violently victimized.

Furthermore, Retz et al. [144] reported an association of the 
dopamine D3 receptor (DRD3) polymorphism with impulsiveness. 
Tis association was detected in a group of violent offenders, but not in 
non-violent individuals. Highest scores on several impulsiveness scales 
were found in heterozygous violent individuals, while homozygotes 

showed significantly lower rating scores, suggesting a heterosis 
effect. Te results of their study suggest that variations of the DRD3 
gene are likely involved in the regulation of impulsivity and some 
psychopathological aspects of violent behavior.

Based on the work of Pavlov et al. [145] serotonin facilitates 
prefrontal inhibition, and thus insufficient serotonergic activity 
can enhance aggression. According to Pavlov et al. [145], genetic 
predisposition to aggression appears to be deeply affected by the 
polymorphic genetic variants of the serotoninergic system that 
influences serotonin levels in the central and peripheral nervous 
systems, as well as the biological effects of this hormone, including rate 
of serotonin production, synaptic release, and degradation. Among 
these variants, functional polymorphisms in the monoamine oxidase 
A (MAOA) and serotonin transporter (5-HTT) may be of particular 
importance due to the relationship between these polymorphic variants 
and anatomical changes in the limbic system of aggressive people. 
Furthermore, functional variants of MAOA and 5-HTT are capable of 
mediating the influence of environmental factors on aggression-related 
traits. Other reports in the literature consistently support the role of 
reward genes in suicidal, aggressive, and violent behaviors [146-148].

Epigenetics of impulsiveness in eating disorders

Problems arising with impulse control often can be expressed in 
the form of behavioral extremes, such as with excessive eating behavior 
[149]. Individuals presenting eating disorders also may show an impulse 
control disorder with co-morbid obsessive-compulsive disorder 
[150]. It has been observed that individuals with bulimia nervosaplus 
lifetime impulse control disorder/self-injurious behavior presented 
more extreme personality profiles, especially on novelty seeking 
and impulsivity, and general psychopathology, or more affective, 
interpersonal and impulse-control problems linked to temperamental 
traits, than individuals with bulimia nervosa/eating disorder without 
impulse control disorder/self-injurious behavior [151,152]. Behavior 
excessiveness associated with impulse control problems have been 
observed also in Parkinson’s disease patients [153,154]. Eating disorders 
share neuropsychiatric co-morbidity and certain susceptibility genes 
with mood disorder, impulsiveness and substance abuse [155,156] 
with greater suicide prevalence among anorexia nervosa patients [157]. 
Tchanturia et al. [158] have found impaired decision-making in both 
male and female patients presenting eating disorder. Concurrently, it 
was shown that internalizing problems (cf. anxiety, depression and 
somatization) preceded the development of anorexia nervosa, whereas 
both internalizing and externalizing behavior problems (aggressive 
and delinquent behavior) preceded bulimic disorders [159]. Van 
Camp et al. [160] have obtained a significant association of WNT10B, 
in the Wnt pathway, with body mass index (BMI) for three of their 
genotyped tagSNPs (rs4018511, rs10875902, rs833841) in a case-
control population of Belgian men as analyzed by logistic regression. 
Allelic heterogeneity testing demonstrated that these associations all 
represent the same significant signal. Tey observed also that two of 
the three significant SNPs were linked with BMI and weight in the 
male population (linear regression analysis). Te authors concluded 
that common variation in WNT10B was shown to be associated with 
BMI and weight.

Epigenetic investigations of eating disorders have shown 
significant global DNA hypomethylation in lymphocytes of anorexia 
nervosa patients, with decreased expression of α-synuclein gene linked 
to α-synuclein gene promoter [161]. Frieling et al. [162] also observed 
lower levels over atrial natriuretic peptide mRNA accompanied by 
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hyper methylation of the atrial natriuretic peptide gene (in the bulimia 
nervosa subgroup) in patients presenting eating disorders. A disturbed 
expression of dopaminergic genes is accompanied by a dysregulation 
of the epigenetic DNA methylation in eating disorder. Individuals 
presenting eating disorders were found to display epigenetic changes 
in dopaminergic genes [163]; here, patients showed an elevated 
expression of DAT mRNA when compared with the controls and a 
down-regulation of the DRD2 expression. Te up regulation of the 
DAT gene was accompanied by a hyper methylation of the gene’s 
promoter in the anorexia nervosa and bulimia nervosa group, while 
a significant hyper methylation of the DRD2 promoter was only 
present in the anorexia nervosa group [164]. It appears that the 
pattern of proopio melanocortin regulation implicates the epigenetic 
association with the underweight state rather than with persisting 
trait markers of anorexia nervosa, thereby precluding its role in 
impulsive behavior. Campbell et al. [165] have indicated that diverse 
adaptability in the systems regulating energy homeostasis with regard 
to population and individual differences may contribute to lifetime risk 
for eating disorders for individuals encumbered by general psychiatric 
predisposition (impulsive behavior). Tus, risk of development of 
eating disorders may increase through the epigenetic forces of poor 
nutrition, obesogenic environment of infancy, and acute or chronic 
stressors or trauma [166].

Nonhuman animal experiments [135,167,168], as well as human 
studies [169-171], have indicated that BDNF levels are affected by 
conditions that are described by disruptions in the control of impulses. 
Concomitantly, impairments in executive functioning and absence 
of motivation are associated with abnormalities in brain circuitry 
involving the prefrontal cortex. Damage within this circuitry often is 
accompanied by a wide range of expressions of impulsiveness and risky 
behaviours [172-174]. For example, Ledgerwood et al. [175] compared 
pathological gamblers and healthy control subjects on several measures 
of executive functioning (including measures of response inhibition, 
working memory, cognitive flexibility and perseveration, planning 
and decision-making) as well as on memory and intelligence tests. 
Pathological gamblers showed specific deficits on measures of planning 
and decision-making, and relative deficits on a measure of perseveration 
compared to controls. Teir results imply that pathological gamblers 
may experience deficits on specific components of executive function. 
In this regard, patients presenting anorexia nervosa have been found not 
to perform well in set-shifting tasks (an executive function). Nakazato 
et al. [176] showed that an anorexia nervosa group made significantly 
more errors total and perseverative errorson a task sensitive to frontal 
brain damage, compared to the healthy control group; serum BDNF 
concentrations were significantly lower in the anorexia nervosa group 
compared to the healthy control group, and also compared to the 
anorexia nervosa recovered group. Additionally, an anorexia nervosa 
group showed significantly impaired ability to shift cognitive sets on 
the same test, with, concurrently, serum glutamine concentrations 
in the anorexia nervosa group significantly higher (by approximately 
20%) than those in the healthy control group [177]. 

It is well known that the endocannabinoid system is involved in 
the regulation of appetite, food intake and energy balance. Central 
neurochemical systems including the monoamine, opioid, and 
cannabinoid systems have been promising targets for anti-obesity 
drugs that modify behavioral components of obesity. In addition to 
modulating eating behavior, centrally acting anti-obesity drugs also 
are likely to alter emotional behavior and cognitive function due to the 
high expression of receptors for the neurochemical systems targeted 

by these drugs within the fronto-striatal and limbic circuitry and 
blockade of dopaminergic activity. Drugs targeting the cannabinoid 
system (rimonabant and taranabant) were consistently associated with 
symptoms of anxiety and depression, including reports of suicidal 
ideation. Similar adverse events also have been noted for the D₁/D₅ 
antagonist ecopipam [178]. Nevertheless it is important to continue 
to understand the relationship between the endocannabinoid system 
and eating disorders. Frieling et al. [163] found significantly higher 
levels of CB(1) receptor mRNA in the blood of patients with anorexia 
nervosa (AN) and bulimia nervosa (BN) when compared to controls. 
No differences were found regarding the expression of CB (2) receptor 
mRNA. Higher CB (1) receptor expression was associated with 
lower scores in several eating disorder inventory-2 (EDI-2) subscales 
including perfectionism, impulse regulation, and drive for thinness. 
Additional points of view concerning reward circuitry and eating 
disorder recovery have been postulated using neuroimaging tools 
[179,180].

Epigenetics of impulsiveness in alcohol abuse

Drug addiction, and alcohol addiction in particular, involves 
a number of aspects that include strongly ingrained compulsive 
behaviors, a high level of heritability, co-morbidity with other 
psychiatric conditions, high frequencies for relapse, powerful resistance 
to treatment therapy that requires high levels of motivation and broad 
strategies, rareness of condition-insight, and a very long-lasting 
nature [181]. Tus, addiction may be viewed as a chronic condition 
of compulsive drug seeking and use that is mediated by stable changes 
in central reward pathways [182,183], whereby the transient and 
potentially stable conditions underlying epigenetic mechanisms result 
inmolecular mechanisms impacting upon neuronal changes that give 
arise to prolonged behavioral changes [184]. Drug-abusing individuals 
who display high delay discounting rates (preference for a reward 
that arrives sooner rather than later) express higher impulsiveness 
scores in comparison with healthy controls, as evidenced with addicts 
undergoing methadone treatment [185]. Fontenelle et al. [186] have 
argued that obsessive-compulsive disorder, impulse control disorders 
and substance-related disorders overlap on different levels, including 
phenomenology, co-morbidity, neurocircuitry, neurocognition, 
neurochemistry and family history. Impaired executive and prefrontal 
cortex functioning are invariably associated with addictive behaviors 
and poor impulse control [187-189]. Prolonged use of addictive drugs 
alters gene expression in brain reward centers by promoting alterations 
in histone acetylation, phosphorylation, methylation, and DNA 
methylation levels in the nucleus accumbens (NAc) [190-192]. Many 
changes in gene transcription under conditions of prolonged substance 
abuse are coordinated by a complex series of histone modifications 
surrounding DNA that result in either repression or activation of gene 
expression [193]. Te genetic basis, mechanisms of action and gene-
environment interactions in alcoholism remain unknown to great 
extent [194]. Nevertheless, lifestyle factors including nutrition, daily 
behaviors, stress, physical activity, working hours, smoking and alcohol 
consumption influence and modify epigenetic mechanisms [195-197]. 
Given the fact that alcohol-dependence seems highly heritable (50 
to 60% of the variance in men and women alike), polymorphisms of 
genes influencing alcohol metabolism, GABAergic, dopaminergic 
and serotonergic neurotransmission seem, indeed, at stake in the 
development of alcohol-dependence and its related features such as 
personality and behavior, including impulse control or craving [198]. 

Tere are numerous putative causal link between prenatal 

http://dx.doi.org/10.4172/2157-7412.1000115


Citation: Archer T, Oscar-Berman M, Blum K, Gold M (2012) Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry. J 
Genet Syndr Gene Ther 3:115. doi:10.4172/2157-7412.1000115

Page 8 of 15

Volume 3 • Issue 3 • 1000115
J Genet Syndr Gene Ther
ISSN:2157-7412 JGSGT an open access journal 

vulnerability of future parental epigenomes damaging environmental 
factors aggravated by abnormal socio-cultural conditions (including, 
for instance, malnutrition and chronic stress) and the alarming risk 
of developing heritable complex neuropsychiatric conditions later in 
life [199-201]. Primordial germ cells, embryos, and fetuses are highly 
susceptible to epigenetic dysregulation by environmental agents, such 
as drugs, which may through different mechanisms, exert multiple 
adverse effects [202]. For instance, DiNieri et al. [203] studied the striatal 
dopamine and opioid-related genes in human fetal subjects exposed 
prenatally to cannabis (as well as cigarettes and alcohol). Tis cannabis 
exposure during the prenatal period decreased DRD2 messenger RNA 
expression in the human ventral striatum (including the NAc). Tey 
observed that cigarette use by the mothers was associated with reduced 
NAcprodynorphin messenger RNA expression, and alcohol exposure 
induced broad alterations primarily in the dorsal striatum of most 
genes. Pregnant rats were exposed to Δ-9-tetrahydrocannabinol (THC) 
and the epigenetic regulation of the NAc DRD2 gene in their offspring 
at postnatal Day 2, comparable to the human fetal period studied, and 
were examined in adulthood [203]. It was found that chromatin immune 
precipitation of the adult NAc revealed increased 2meH3K9 repressive 
mark and decreased 3meH3K4 and RNA polymerase II at the DRD2 
gene locus in the THC-exposed offspring. Decreased DRD2 expression 
was accompanied by reduced dopamine D2 receptor (D (2) R) binding 
sites and increased sensitivity to opiate reward in adulthood. Tey 
concluded that maternal cannabis use altered developmental regulation 
of mesolimbic D (2) R in offspring through epigenetic mechanisms that 
regulate histone lysine methylation, and the ensuing reduction of D (2) 
R might contribute to addiction vulnerability later in life. In addition, 
there appeared to be a direct role for chromatin remodeling in the 
regulation and stability of drug-mediated neuronal gene programs and 
the subsequent promulgation of addictive behaviors [191].

Alcoholism involves compulsive and uncontrolled consumption of 
alcoholic beverages, generally detrimental to the individual drinker’s 
health, personal relationships, occupation and social standing. Te 
disorder often involves affective symptoms, such as in depression, and 
high levels of impulsiveness [204], and in alcohol-dependent patients 
a strong relationship exists between depressiveness and impulsiveness 
[205]. It has been shown that high levels of impulsiveness/impulse 
control problems seem to elevate vulnerability for development of 
alcohol dependence, as well as being predictive for poor outcome 
measures. Jakubczyk et al. [206] have presented results indicating a 
significant association between high levels of behavioral impulsivity 
and the C/C genotype, linked to reductions in 5HT2A receptors in 
the CNS, of rs6313 in a group of 304 alcohol-dependent patients. 
Other important reports concerning reward gene polymorphisms 
and alcoholism add to the large scientific knowledge of gene-by-
environment implications for both prevention and treatment targets 
[194, 207-209].

Epigenetic regulation of BDNF in impulse control disorders

Both cognitive and emotional impulsivity have been associated 
with plasma levels of BDNF [210], and BDNF single nucleotide 
polymorphisms [211,212]. Te neurotrophin affects the development 
and integrity of the noradrenergic, dopaminergic serotonergic, 
glutamatergic and cholinergic neurotransmitter systems [213-215]. 
Additionally, BDNF has been found to exert important influences 
upon feeding behavior, food intake regulation, energy metabolism and 

weight control in young and adult individuals [216-218]. Links have 
been established between various forms of impulse control disorders or 
psychopathological traits with alterations of BDNF integrity [219-221]. 
A common polymorphism of the human BDNF gene, Val66Met that 
affects human memory-related hippocampal activity and performance 
[222], has been associated with different forms of eating disorders, 
alterations in BMI values and obesity in adult populations [223-
225]. Skledar et al. [226] have demonstrated a significant association 
between the presence of one or two Met alleles and obesity in ethnically 
homogenous groups of healthy Caucasian children and adolescents. 
Timpano et al. [227] studied the BDNF gene in a large (N=301) clinical 
sample of patients presenting obsessive-compulsive disorder, who were 
classified as hoarding or non-hoarding types. Compulsive hoarding 
(pathological collecting) presents a behavioral pattern characterized by 
excessive acquisitiveness and inability/unwillingness to discard large 
quantities of objects that would seemingly qualify as useless or without 
value. Compulsive hoarding behavior is linked to health risks, impaired 
functioning, economic burden, and adverse effects on caregivers. It was 
observed that the Val/Val genotype was linked with the hoarding type 
and more severe hoarding behaviors, as well as greater BMI levels. 
Hoarding levels also were associated with greater BMI scores; hoarding 
individuals were much more likely to be classified as obese compared 
with the non-hoarding type. Tere appears to be a complex gene, body 
weight, and psychopathology interaction whereby a primitive, survival 
“thrifty gene” strategy may be conserved and represented in a subgroup 
of individuals manifesting severe hoarding symptoms.

Extreme early care giving adversity—a possible consequence of 
certain types of institutionalized up-bringing—may be associated 
with a range of negative behavioral and psychological outcomes [228] 
and a variety of persistent clinical and behavioral disorders [229]. 
In a group of institutionalized Romanian children adopted into UK 
families, it was observed that the pattern of normality/impairment was 
mainly established by 6 years of age, with considerable continuity at 
the individual level between 6 and 11 years [230,231]. Indiscriminate 
social behavior has been observed across studies of children reared in 
institutions and a part of a deprivation-specific pattern [232]. Te major 
features of indiscriminate social behavior include: lack of reticence 
with unfamiliar adults, inappropriate social boundaries and affection 
with strangers and failure to check back with a familiar caregiver when 
in an unfamiliar setting. Likewise, the BDNF gene is associated with 
a wide range of neuropsychiatric conditions comorbid with problems 
of impulse control [233-236]. Drury et al. [237] compared a group 
of abandoned Romanian children (between 6 and 30 months of age) 
assigned to a “care-as-usual” (CAUG, n = 68) or a foster care (FCG, n = 
68) condition after exclusion criteria, genetic syndromes, fetal alcohol 
syndrome and microcephaly, were met. Indiscriminate social behavior 
was assessed at four time points: Baseline, 30, 42 and 54 months-of-age. 
It was observed that children with either the s/s 5httlpr genotype or 
met66 carriers in BDNF presented the lowest levels of indiscriminate 
social behavior in the FCG condition and the highest levels in the 
CAUG. Children randomized to institutional CAUG with both 
plasticity genotypes presented the most signs of indiscriminate social 
behavior whereas those with both plasticity genotypes assigned to the 
FCG condition presented the fewest signs at 54 months. Children with 
no plasticity alleles showed no intervention effect upon indiscriminate 
social behavior at 54 months. Tese findings provided further evidence 
of gene-by-environment interaction in the context of differential 
susceptibility to institutionalized, adverse care environments [238, 
239]. 
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Limitations
One limitation of many of the studies reviewed here pertains to 

the small DNA methylation differences considered relevant when 
significant levels are observed. It seems to be the case that biologically-
relevant differences, linked to the sensitivity of the epigenetic 
techniques that often failed to exceed 10%, ought to accompany the 
statistically significant differences. DNA methylation in pure cell 
populations follows a trimodal distribution: un methylated; partially 
methylated (e.g., imprinted genes); and methylated. Generally, 
minor differences in DNA methylation may exert no impact on gene 
expression while for most genes clear-cut changes are necessary for 
differences to appear, e.g., from unmethylated to partially methylated 
or completely methylated. Despite the limitation that has provided 
doubts concerning a number of studies, one ought not to be blinded to 
promising avenues: Nonhuman animal models designed to investigate 
fetal alcohol spectrum disorders, intimately involved in impulsive 
behaviors and reward circuitry,can serve to(i) identify genetic and 
epigenetic modifications that may be predictive of the neurobehavioral 
and neurobiological dysfunctions in offspring induced by gestational 
alcohol exposure, and (ii) determine the relationship between structural 
alterations in the brain induced by gestational alcohol exposure and 
functional outcomes in offspring [240]. Prevailing notions from a 
variety of studies support the contention that neurobehavioral and 
neurobiological dysfunctions induced by gestational alcohol exposure 
are correlated with the genetic background of the affected offspring 
and/or epigenetic modifications in gene expression.

Conclusions
Te results of human and nonhuman animal studies have 

suggested that early-life adversity can lead to epigenetic regulation 
of genes involved in stress-response, behavioral disinhibition and 
cognitive-emotional systems. Turecki et al. [241] have described how 
early-life adversity increases risk of suicide in susceptible individuals 
by disrupting the development of stable emotional, behavioral and 
cognitive phenotypes that are likely to result from the epigenetic 
regulation of the hypothalamic-pituitary-adrenal axis and other 
systems involved in responses to chronic or acute traumatic stress. 
Te diversity of interactions between genetic and epigenetic factors 
that may or may not confer flexibility on the epigenome is expressed 
in adaptability. Taken together, there are several avenues implicating 
epigenetic processes underlying the final outcome of pathological 
impulsiveness in neuropsychiatric disorders that associate not only 
serotonergic and dopaminergic [242] systems but also MAO-activity 
and COMT [243] genes, and even the neuropeptide Y gene [244] in 
the disease etiopathogenesis. In all likelihood, greater complexity 
of epigenetic mechanisms awaits both description and assimilation 
into prevailing notions. Finally, early life events may have important 
effects on gene expression and as such must be evaluated in patient 
history questionnaires [39]. In fact recent evidence from rodent studies 
suggests that maternal care in the first week of postnatal life establishes 
diverse and stable phenotypes in the offspring through epigenetic 
modification of genes expressed in the brain that shape neuroendocrine 
and behavioral stress responsivity throughout life.
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