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ABSTRACT
The general organization of neocortical connectivity in

rhesus monkey is relatively well understood. However,

mounting evidence points to an organizing principle that

involves clustered synapses at the level of individual

dendrites. Several synaptic plasticity studies have

reported cooperative interaction between neighboring

synapses on a given dendritic branch, which may poten-

tially induce synapse clusters. Additionally, theoretical

models have predicted that such cooperativity is advan-

tageous, in that it greatly enhances a neuron’s computa-

tional repertoire. However, largely because of the lack of

sufficient morphologic data, the existence of clustered

synapses in neurons on a global scale has never been

established. The majority of excitatory synapses are

found within dendritic spines. In this study, we demon-

strate that spine clusters do exist on pyramidal neurons

by analyzing the three-dimensional locations of �40,000

spines on 280 apical dendritic branches in layer III of the

rhesus monkey prefrontal cortex. By using clustering

algorithms and Monte Carlo simulations, we quantify the

probability that the observed extent of clustering does

not occur randomly. This provides a measure that

tests for spine clustering on a global scale, whenever

high-resolution morphologic data are available. Here we

demonstrate that spine clusters occur significantly more

frequently than expected by pure chance and that spine

clustering is concentrated in apical terminal branches.

These findings indicate that spine clustering is driven by

systematic biological processes. We also found that

mushroom-shaped and stubby spines are predominant

in clusters on dendritic segments that display prolific

clustering, independently supporting a causal link

between spine morphology and synaptic clustering.
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A large body of theoretical and experimental evidence

points to synaptic clustering as a basic organizing princi-

ple of neuronal connectivity. Theoretical models have

shown that precisely timed and spatially localized synaptic

inputs can sum nonlinearly (Mehta, 2004; Govindarajan

et al., 2006; Larkum and Nevian, 2008), generating a

response that is either greater or less than expected if the

inputs were simply added together. Nonlinear summation

of synaptic inputs increases a neuron’s flexibility to differ-

entiate spatiotemporal input patterns and greatly enhan-

ces its computational efficiency (Poirazi and Mel, 2001;

Poirazi et al., 2003; Polsky et al., 2004; Gordon et al.,

2006). Such nonlinear summation in spatially localized

synapses has also been observed experimentally (Larkum

and Nevian, 2008; Larkum et al., 2009). Important new evi-

dence suggests that groups of spatially localized synapses

on a dendrite can process functionally similar information

from presynaptic cell assemblies (Takahashi et al., 2012).

It has also been reported that newly formed spines

preferentially grow near synapses activated through
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learning-related induction of long-term potentiation (LTP),

possibly leading to spine clustering (De Roo et al., 2008).

Recent experiments have also suggested that the spa-

tially colocalized synapses can be regulated simultane-

ously and provide a mechanistic framework that could

account for the emergence of spatial synapse clusters.

Harvey and Svoboda found that early-phase LTP (E-LTP)

induction at one synapse lowered the threshold for E-LTP

induction at synapses within a �10-lm neighborhood on

the same dendrite branch (Harvey and Svoboda, 2007).

Specifically, Harvey and Svoboda showed that protein-

synthesis-independent cross-talk between a synapse and

its neighbors existed after induction of E-LTP. Govindarajan

and colleagues (2011) studied the protein-synthesis-de-

pendent late phase of LTP (L-LTP) and demonstrated that

the efficiency of L-LTP induction on a dendritic spine neigh-

boring a spine in which LTP had already been induced was

inversely proportional to the distance between the two

spines. Further support for clustered synapses arises from

the existence of dendritic spikes, which are likely to be

evoked by spatiotemporally localized synaptic inputs (Lar-

kum et al., 2001; Murayama et al., 2007).

Despite these clues, the question of whether synapse

clustering occurs on a global scale on branches through-

out the dendritic arbor is difficult to explore. Several

network-level approaches are able to identify synaptic

connections between specific neurons. Recent technolo-

gies, including light-activated ion channels (Petreanu

et al., 2007), glutamate uncaging (Nikolenko et al., 2007),

trans-synaptic tracers (Wickersham et al., 2007), genetic

labeling (Livet et al., 2007), and in vivo multiphoton imag-

ing (Kerr and Denk, 2008), have made great strides in

improving our understanding of how neurons connect to

form circuits. However, identifying individual synapses

participating in these connections and determining

whether synapses group together functionally to transmit

related information falls beyond the purview of these

technologies.

There is much to be gained by examining the location

and distribution of synapses on individual neurons. On

many neurons, dendritic spines provide a morphologic

reflection of the presence of excitatory synapses. Confo-

cal and multiphoton laser scanning microscopy (for

review see Wilt et al., 2009) have allowed us to visualize

spines across entire neurons, making analysis of the

three-dimensional (3-D) spine shape and location theoret-

ically possible. However, manual analysis of spines is pro-

hibitively time consuming and widely subject to operator

variability. Recent software packages now can analyze

dendrite and spine morphology automatically (for review

see Lemmens et al., 2010; Meijering, 2010), greatly

reducing manual interventions to initial setup and posta-

nalysis editing. In particular, we utilized NeuronStudio

(Rodriguez et al., 2003, 2006, 2008, 2009; Dumitriu

et al., 2011) for all automated morphology reconstruc-

tions included in this study. Still, establishing the exis-

tence and biological significance of clusters of spines is

inherently problematic. Visual inspection may identify

clusters but cannot differentiate between clustering

resulting from a systematic biological process and clus-

tering that occurs purely by chance. As automated image

analysis methods render high-resolution morphologic

data more accessible, we need a subjective method to

test whether spine clustering occurs more often than

expected by chance.

Here we present a novel approach that pairs a cluster-

ing algorithm with Monte Carlo simulations to perform

such a test. We introduce a measure called the ‘‘C-score,’’

which is independent of spine density and quantifies the

probability that the observed number of spine clusters

occurred randomly. We analyzed the spatial location and

shape of spines from 280 dendrite branches of seven

layer III prefrontal cortex (PFC) pyramidal neurons from

three adult rhesus monkeys, imaged in their entirety at

high resolution. We show that the frequency of spine clus-

tering on apical terminal branches of these neurons is

unlikely to occur merely by chance, suggesting that a sys-

tematic biological process contributes to the observed

clustering. We also found that clusters have higher den-

sities of mushroom-shaped and stubby spines on den-

drites with prolific clustering than on dendrites with

sparse clustering, indicating that spine shape and cluster-

ing may be coregulated.

MATERIALS AND METHODS

Cell imaging, 3-D neuron reconstruction,
and morphometric analysis

Seven layer III pyramidal neurons filled during electro-

physiological recordings in in vitro slices prepared from

the dorsolateral PFC (area 46) of three young adult male

rhesus monkeys (Macaca mulatta, ages ranging from 5.2

to 6.9 years) were used in the present study. These mate-

rials were derived from animals killed as part of other

ongoing studies involving a larger set of subjects. These

three monkeys were part of a cohort used in studies of

normal aging on the brain. Animals were behaviorally

assessed on a battery of cognitive tasks (Chang et al.,

2005; Luebke and Amatrudo, 2010), but no invasive

procedures had been performed on them prior to the

time of death.

The monkeys were housed at the Boston University

Laboratory Animal Science Center (LASC) in strict

accordance with animal care guidelines as outlined in the

NIH Guide for the care and use of laboratory animals and

the U.S. Public Health Service policy on humane care and
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use of laboratory animals. Boston University LASC is fully

accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care, and all proce-

dures were approved by the Institutional Animal Care and

Use Committee (IACUC). Electrophysiological and cell

filling protocols were performed as described in detail

elsewhere (Luebke and Chang, 2007; Luebke and

Amatrudo, 2010).

Ketamine (10 mg/ml) was used to tranquilize the mon-

keys, following which they were deeply anesthetized with

sodium pentobarbital (to effect 15 mg/kg, i.v.). Next, the

monkeys underwent a thoracotomy, and a craniotomy

was performed. A biopsy was conducted to obtain

10-mm-thick blocks of the PFC (area 46) containing both

the upper and lower banks of the principal sulcus. A

vibrating microtome was used to cut 400-lm-thick coro-

nal slices, which were placed in 26�C oxygenated (95%

O2/5% CO2) Ringer’s solution (concentrations in mM:

26 NaHCO3, 124 NaCl, 2 KCl, 3 KH2PO4, 10 glucose,

2.5 CaCl2, 1.3 MgCl2, pH 7.4; all chemicals obtained from

Sigma, St. Louis, MO). Slices equilibrated for at least

1 hour and were maintained for up to 12 hours. The time

between perfusion and PFC slice preparation was approx-

imately 10–15 minutes. For recording, individual slices

were positioned under a nylon mesh in a submersion-type

slice-recording chamber (Harvard Apparatus, Holliston,

MA) and constantly superfused with 26�C, oxygenated

Ringer’s solution at a rate of 2–2.5 ml/minute.

Electrodes were pulled by a horizontal Flaming and

Brown micropipette puller (model P-87; Sutter Instru-

ments, Novato, CA) and filled with a potassium methane-

sulfonate-based internal solution (concentrations, in

mM): 122 KCH3SO3, 2 MgCl2, 5 EGTA, 10 NaHEPES, 1%

biocytin (pH 7.4; Sigma). Cells were simultaneously filled

with biocytin during recording. Slices that contained filled

cells were then fixed in 4% paraformaldehyde in 0.1 M

phosphate-buffered saline (PBS) solution (pH 7.4) at 4�C

for 2 days. Slices were placed in 0.1% Triton X-100/PBS

at room temperature for 2 hours, after rinsing with PBS

(three times, 5–10–15 minutes), and were subsequently

incubated with streptavidin-Alexa 488 (1:500; Invitrogen,

Carlsbad, CA) at 4�C for 2 days. After incubation, slices

were mounted on slides with Prolong Gold mounting me-

dium (Invitrogen) and coverslipped.

Confocal laser scanning microscopy (CLSM) was per-

formed as described previously (Rocher et al., 2010),

with a voxel size of 0.1 lm2 � 0.2 lm. Each neuron’s

apical dendritic tree was imaged in its entirety using mul-

tiple stacks. Raw image stacks then were deconvolved

using AutoDeblur (MediaCybernetics, Bethesda, MD). The

final image of each neuron (Fig. 1a) was created by inte-

grating all deconvolved stacks together using the Volume

Integration and Alignment System (VIAS; Rodriguez et al.,

2003). To ensure that the dendritic tree was largely com-

plete, only cells without cut dendrites in the proximal half

of the dendritic trees were used; they were never used if

the apical trunk was cut. The yz-projection in Figure 1a

demonstrates that much of the apical arbor was captured

successfully.

The custom-designed software NeuronStudio (Rodriguez

et al., 2006, 2008, 2009) was used for automated

reconstruction of the dendritic arbor and for automated

identification and shape classification of spines (Fig. 1b–d).

Spine shape (mushroom, stubby, thin) was determined

using criteria previously described (Rodriguez et al., 2008).

Subsequent manual examination and editing reduced the

incidence of false positives and negatives.

Each dendrite branch traversed a 3-D path in the image

but was represented here as a one-dimensional (1-D)

segment with total length equal to the branch’s traversed

path length. The location of each spine along the dendrite

was represented by first projecting the spine head

onto the dendrite, then measuring the 1-D path length

from the start of the parent dendrite branch to that point

(Fig. 2a).

Because basal dendrites are morphologically distinct

from apical dendrites and integrate inputs somewhat

differently (Spruston, 2008), we restricted the present

analysis to apical dendrites. Similarly, because evidence

in the CA1 field of the hippocampus suggests that spikes

are generated more easily in oblique rather than terminal

branches (Gasparini et al., 2004; Losonczy and Magee,

2006), we considered oblique and terminal branches sep-

arately. The oblique dendrites are distal to the primary

trunk, correspond to secondary and tertiary levels of

branching, and are of lower order than the apical terminal

branches. Thus, whereas the terminal branches spread

between the superficial parts of layer III (layer IIIa) out

into layer I, the oblique branches for the most part reside

in the middle portion of layer III (layer IIIb). Prior to the

clustering analyses, manual inspection excluded all

dendrite segments obtained from images of insufficient

quality (Rodriguez et al., 2006, 2008) or with unusually

high or low spine density. Branches were classified

manually as either ‘‘oblique’’ or ‘‘apical terminal’’ through

visual inspection. These procedures yielded 152 apical

terminal branches with 23,257 spines and 128 apical

oblique branches with 19,319 spines, across the seven

neurons. After confocal images had been acquired and

deconvolved as described above, NeuronStudio and

Adobe Photoshop CS4 were used to prepare images for

publication. No other digital manipulations were used.

Clustering algorithm
Unsupervised clustering algorithms avoid a priori speci-

fication of either the number of elements per cluster or

Yadav et al.
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the total number of clusters (MacKay, 2003). Iterative

hierarchical methods are one class of unsupervised clus-

tering algorithms commonly used in pattern recognition,

data mining, and computational biology (Romesburg,

1984). Hierarchical methods fall into two categories: top

down and bottom up. Top-down methods begin with a sin-

gle cluster containing all of the observations, then split

the data into smaller clusters if specific conditions are

satisfied (Murtagh, 1983; Gronau and Moran, 2007). The

more common bottom-up approach begins with each indi-

vidual data point (‘‘leaf’’), then iteratively combines leaves

that satisfy some criteria of minimum dissimilarity among

the whole set.

For our spatially distributed spine data, we chose

the unweighted pair group method with arithmetic

mean (UPGMA), a simple, iterative, bottom-up hierarchi-

cal clustering method that uses Euclidean distance as

its minimum dissimilarity criterion. The clustering was

performed separately for each dendrite branch (see

Fig. 2). At the start of the clustering, the 1-D path

length of each spine was represented as a leaf node.

In the first iteration, two nearest leaf nodes were

merged to form a higher order node located at the

midpoint of the parent leaf nodes (Sokal and Michener,

1958). The merging of nearest nodes repeated in sub-

sequent iterations, with the parent nodes being either

leaf nodes or higher order nodes. Thus, as the

algorithm continued, a node corresponded either to a

single spine or to a group (cluster) of spines merged

during previous iterations.

Figure 2b illustrates this iterative combination of nodes

in the form of a dendrogram. The x-axis depicts equally

spaced leaf nodes labeled 1–19, corresponding to the 19

spines on the dendritic branch shown in Figure 2a. The

height along the y-axis represents the 1-D ‘‘link’’ distance

between constituent members of the nodes created by

each iteration.

By default, UPGMA iterates until all leaf nodes are com-

bined into a single cluster with highly dispersed constitu-

ents. To stop the clustering in an objective, unsupervised

way, we used a quantitative stopping criterion called the

inconsistency coefficient (IC; Zahn, 1971). The IC

Figure 1. Imaging and automated reconstruction of neurons. a: The xy- and yz-projections of deconvolved CLSM image stacks of a layer

III pyramidal neuron from area 46 of a rhesus monkey, integrated with VIAS. b: Detail of automated reconstruction of dendritic trees using

NeuronStudio. This region is boxed in a. The box in b denotes the region shown in detail in c,d. c: Dendrite centerline (green line) and

spine detection (red dots) using NeuronStudio, superimposed on the deconvolved data. d: 3-D representation of the dendrite branch and

spine reconstruction shown in c. Scale bars ¼ 50 lm in a; 20 lm in b; 5 lm in c (applies to c,d).

Spine clustering in neurons: morphologic evidence
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measures the variability in link sizes of a node and its con-

stituent nodes. The IC for the ith node of a dendrogram is

given by

ICi ¼
xi � xk

rk

(1)

where xi is the link corresponding to the ith node, and

xk and rk are the mean and standard deviation of the

set of links of all nodes constituting node i from k previ-

ous iterations, including xi itself. For a node consisting

of two leaves, with no lower level links against which to

compare, the IC is assigned a value of 0. The IC value

for a given node is low if the constituent leaf nodes are

grouped together tightly and high if the constituent

nodes are more dispersed.

As UPGMA progressed, we accepted new nodes only

with an IC less than a prescribed cutoff, thus controlling

the level of dispersal in the extracted clusters. We used

an IC cutoff of 0.75, slightly higher than 1=
ffiffiffi
2

p
� 0:71, the

minimum IC for a node with at least one nonleaf constitu-

ent. This cutoff extracted the tightest cluster groupings

while ensuring that at least one leaf was included in the

formation of any node. Moreover, the algorithm was

allowed to group leaves into pairs but could only add one

leaf at a time beyond that (Fig. 2c–e).

UPGMA is an unsupervised algorithm, so we postpro-

cessed its results to remove clusters that were not biolog-

ically plausible. Clusters having a spine density (spines

per micrometer of dendrite) smaller than the branch

spine density were deemed to be unnphysical. Each

Figure 2. Illustration of UPGMA clustering algorithm. a: Nineteen spines identified automatically along a segment of dendrite branch,

superimposed on the xy-projection of the deconvolved CLSM image. Each spine head is shown as a colored circle, with a straight line illus-

trating its projection onto the dendritic centerline (yellow). Colors signify the final clusters determined by the algorithm shown in f; spines

not belonging to a cluster are shown in gray. b: Dendrogram of the full UPGMA process. The x-axis depicts equally spaced leaf nodes cor-

responding to the spines in a; the height along the y-axis represents the 1-D distance between constituent members of the nodes created

at each iteration. Colors correspond to the final cluster groupings. Groupings that violate the inconsistency coefficient (see Materials and

Methods), shown in black, were not performed. c: Schematic representation of 1-D spine locations along the dendrite. d: Spine clusters

identified after five iterations of UPGMA (gray horizontal line in b). Colored spines have already been merged into groupings; black spines

have not yet been classified. e: Cluster groupings identified at the termination of the UPGMA algorithm, before pruning unrealistic clusters.

f: Final clustering results, after pruning clusters with the density-based cutoff (see Materials and Methods). Spines identified within each

cluster are shown in a single color and are classified as ‘‘clustered spines’’ for subsequent analyses. Remaining spines (shown in gray) are

classified as singlets. Scale bar ¼ 2 lm in a.

Yadav et al.

2892 The Journal of Comparative Neurology |Research in Systems Neuroscience



unphysical cluster was reduced iteratively by pruning the

one spine whose removal provided the largest decrease

in the length of the remaining cluster (Fig. 2f). This pro-

cess continued until the spine density of the pruned clus-

ter was greater than the branch spine density.

In our analyses, a spine cluster is defined as a group of

three or more spines after the completion of UPGMA

analysis and postprocessing. Spines belonging to UPGMA-

identified clusters were categorized as ‘‘clustered spines.’’

Remaining spines were categorized as ‘‘singlet spines.’’

Monte Carlo simulations and C score
calculation

We used Monte Carlo simulations to quantify the

amount of clustering observed in each dendrite branch of

our data relative to the amount expected in equivalent

sets of randomly placed spines. Suppose B was one such

dendrite branch with 1-D length LB and nB spines. We also

created M ¼ 5,000 copies of B, randomly placing the nB
spines according to a uniform distribution along the

length of a branch for each copy, Bi, i ¼ 1 . . . M (Fig. 3a).

UPGMA was then performed on the real branch B and on

each of the randomized copies Bi. Let QB � nB be the

number of clustered spines on the real branch B, and let

qi be the number of clustered spines on randomized copy

Bi. We interpreted the set {qi} as observations of a random

variable, WB, representing the number of clustered spines

extracted from each random copy of branch B.

The frequency distribution of WB over all randomized

copies was normalized to obtain a probability distribution,

P(WB), of WB. Then

CB ¼
ZQB

0

PðwBÞdwB; (2)

was the cumulative distribution function of the random

variable WB, with 0 � CB � 1. Hereafter called the ‘‘C-

score,’’ CB gave the proportion of randomized copies of

B that had fewer spines in clusters than was observed

in the real data (Fig. 3b). A C-score close to 1 indicated

that the number of clustered spines observed on the

true branch B was significantly higher than expected by

chance alone.

Similarly to the calculation of CB, C-scores were also cal-

culated for each random branch copy. By definition, these

C-scores were analogous to P values with P(WB) as the

underlying distribution and consequently were guaranteed

to be uniformly distributed (Ewens and Grant, 2001).

Statistical analysis
The first goal of the statistical analysis was to test

whether the data support the hypothesis that spine clus-

ters occurred more frequently than was expected

randomly. If so, then the second goal was to compare

quantitatively the characteristics of spine clusters

(e.g., cluster size, composition of spine types, spine

number per cluster) that were generated by systematic

biological processes with the characteristics of clusters

generated randomly. In the absence of morphologic data

on the precise locations of presynaptic neurons, it is

impossible to predict functional significance on a cluster-

by-cluster basis. Instead, we used statistical testing to

distinguish individual dendritic branches that were ‘‘highly

clustered,’’ possessing significantly more spine clusters

than were expected randomly, from branches that were

‘‘sparsely clustered.’’ This led to our choice of the bino-

mial test (Siegel, 1956), a test that is commonly used

when grouping data into two categories. The distribution

of C-scores for real and randomly generated dendritic

branches was divided into two categories by introducing

a threshold CT, 0 � CT � 1. Branches with C-scores

higher than CT were classified as highly clustered; all other

segments were considered sparsely clustered. A larger

threshold CT provided a more conservative classification of

a branch as highly clustered. Because C-scores for ran-

domly generated segments were uniformly distributed, the

Figure 3. Randomization method to evaluate degree of clustering

in data. a: Final UPGMA result from Figure 2f, as a representative

branch to illustrate randomization. Each section of length LB and

nB spines was analyzed via UPGMA, resulting in QB spines

grouped into clusters. Then, M ¼ 5,000 copies of the branch

were made, each having length LB and randomized locations of

the nB spines. Random branch copies are labeled as Bi, with i ¼
1, 2 . . . M, and the number of spines in clusters for each random

copy is labeled qi. b: The M qi values make up an approximately

normal distribution. The C-score for each real branch gave the

percentage of this distribution that is smaller than CT.

Spine clustering in neurons: morphologic evidence
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proportions of highly clustered and sparsely clustered seg-

ments in the randomized data were 1 � CT and CT, respec-

tively. We tested whether the proportion of highly clustered

segments in the real data was significantly higher than

1 � CT. Under the null hypothesis that real segments were

distributed no differently from random segments, the prob-

ability of an individual segment being highly clustered was

s ¼ 1 � CT. Then, assuming a binomial distribution, the

probability that at least m segments from a total of n seg-

ments were clustered was given by

P ¼
Xn
i¼m

nCis
ið1� SÞðn�iÞ

; (3)

where nCi is the combination operator, equal to the

number of combinations of n objects taken i at a time.

This gave the P value for the binomial test.

To test the null hypothesis that C-score and spine den-

sity were independent, we constructed contingency tables

of C-score vs. spine density. It is reasonable to hypothesize

that a high spine density would lead to a high C-score;

therefore our one-sided alternative hypothesis was that C-

score and spine density were positively correlated. For a

given set of dendrite branches, we first determined the

boundaries of the four quartiles of C-score (Q1,C, Q2,C, Q3,C,

Q4,C) and spine density (Q1,D, Q2,D, Q3,D, Q4,D). Then, each

cell (i,j) of the 4 � 4 contingency table was equal to the

numbers of dendrite branches that were in quartile i for C

score and quartile j for spine density. Thus, from a set of

n branches, the expected frequency in each cell was n/16.

A one-tailed v2 test for independence (Ewens and Grant,

2001) was used to compute the test statistic (9 df).

G*Power 3 (Faul et al., 2007) was used to determine an

appropriate sample size (n ¼ 231) so that the test had

95% power to detect an effect size of 0.32, which was suffi-

cient to detect an effect as small as a 2% deviation from

the expected frequency in each cell (Cohen, 1988). From

the Monte Carlo data, we repeated the v2 test 1,000 times

with different random samples of 200 data points each.

We also conducted the v2 test once for the C score/spine

density pairs from the real data (n ¼ 280), considering

oblique and tuft branches together.

Spine cluster statistics were reported as arithmetic

mean 6 standard error of the mean. Statistical compari-

sons among highly clustered and sparsely clustered

branches were performed using the Wilcoxon rank sum

method after analyzing for normality using the Lilliefors

test (Lilliefors, 1967). For all statistical tests, null hypoth-

eses were rejected at a¼ 0.05.

RESULTS

Seven layer III pyramidal neurons drawn from the dor-

solateral PFC of three adult rhesus monkeys were imaged

with a voxel size of 0.1 lm2 � 0.2 lm, and dendritic

branches and spines were reconstructed using auto-

mated software (Fig. 1; see Materials and Methods). We

then used our clustering method (Fig. 2) and Monte Carlo

simulations (Fig. 3) to analyze 128 apical oblique and 152

apical terminal branches that included 19,319 and

23,257 spines, respectively.

As detailed in Materials and Methods, the merging of

spine clusters by the UPGMA algorithm was governed by

the inconsistency coefficient (IC). We found that cluster

extraction was largely insensitive to changes in the IC

cutoff, suggesting that our algorithmic implementation of

cluster extraction was robust. Figure 4 illustrates clusters

identified after UPGMA but before the postprocessing.

Extracted clusters were unchanged for IC cutoffs ranging

from 0.75 through 0.95. Above an IC cutoff of 0.95,

smaller clusters were increasingly merged into larger

ones. Because we wished to be conservative in

Figure 4. Cluster groupings were largely insensitive to the inconsistency coefficient (IC) cutoff. The x-axis illustrates the 1-D locations of

62 spines along a 50-lm length of dendrite. Each color signifies a group of spines merged into a single cluster by UPGMA, using the IC

criterion cutoffs shown along the y-axis. Cluster groupings were identical for IC cutoffs from 0.75 to 0.95. Above 0.95, smaller clusters

were merged into larger ones, as denoted by brackets and arrows.
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identifying spine clusters, we performed our subsequent

analyses with an IC cutoff of 0.75, just above the minimal

IC of 1=
ffiffiffi
2

p
� 0:71.

The C-score is independent of spine density
for randomly placed spines

It is reasonable to hypothesize that high spine density

on a branch leads to a higher C-score. That is, a clustering

measure might identify a group of randomly spaced

spines as highly clustered simply because the spines are

tightly packed (high density). We first tested whether this

seemed to be true if spines were placed randomly on the

branch. In particular, the Monte Carlo procedure (see

Materials and Methods) created 5,000 copies of each

real dendrite branch with randomly distributed spines,

1.4 million branches in all. Using 1,000 different random

samples taken from the Monte Carlo population (Materi-

als and Methods), we tested the null hypothesis that the

C-score of a dendrite branch with randomly placed spines

was independent of spine density. In repeating the v2

test on each sample, the null hypothesis of independence

was rejected only 50 times. This is equal to the false-posi-

tive error rate a ¼ 0.05, so these results strongly support

the idea that C-score is independent of spine density

when spines are distributed randomly. Figure 5a illus-

trates C-score vs. spine density for a random sample of

this population from 32 dendritic branches.

From the 280 branches of the real neurons, the null hy-

pothesis of independence was rejected (v2 ¼ 21.71, P ¼

0.010). Next, by using simple linear regression analysis,

we attempted to predict C-score from spine density of

these data. Although the slope was significantly greater

than zero (slope ¼ 0.061; t278 ¼ 2.63; P ¼ 0.0091;

Y ¼ 0.39 þ 0.061X), the low coefficient of determination

(r2 ¼ 0.024) indicated that spine density explained very

little of the observed variation in C-score (Fig. 5b).

Nonrandom clustering in cortical
apical dendrites

For the remainder of this article, we use the C-score

threshold CT to define highly clustered dendrite branches

as those exhibiting more clustered spines than expected

randomly (see Materials and Methods). Remaining

branches were considered sparsely clustered. Figure 6

presents typical examples of these branch types. Spines

classified as lying in clusters are shown in pink; singlet

spines that were not classified into clusters are shown in

orange (Fig. 6a,b; Fig. 6c shown in black). A greater pro-

portion of the spines was classified as lying in clusters on

the highly clustered branch (Fig. 6a,c, C-score 93) than

on the sparsely clustered branch (Fig. 6b,c; C-score 44).

The 2-D projections (xy, yz, and xz) may be misleading,

which is why it is important that the neurite reconstruc-

tion and spine detection algorithms operate in three

dimensions. In particular, in 2-D projections, the trav-

ersed distance along the dendrite may appear distorted,

and spines may even seem to be false positives. Looking

at all three projections helps to clarify the distortions but

Figure 5. C-score vs. spine density for randomized and real data. a: Scatterplot of C-score vs. spine density for randomized copies of 32

dendrite branches. Each red circle denotes the clustering result of a branch from the real data, a subset of the data from b. Open black

circles show the C-score for 50 randomized copies of each of these branches. For these randomized data, C-score was independent of

spine density. b: Scatterplot of C-score vs. spine density for all 280 dendrite branches from the real imaged neurons. Red circles denote

apical terminal branches, and black circles denote oblique branches. The dashed line shows the best-fit linear regression (r2 ¼ 0.02), and

the gray region represents branches that were classified as ‘‘highly clustered.’’
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does not completely eliminate them. Figure 6c clearly

illustrates the spine locations along the length of each

dendrite.

Table 1 summarizes the number of highly clustered

branches as determined by two different values of the

threshold CT (0.90 and the more conservative 0.95). We

tested the null hypothesis that the number of highly clus-

tered branches observed in our data was equal to the

number that was expected with randomly distributed

spines. For apical terminal branches, the null hypothesis

was rejected for both values of CT (P values of 0.049 and

0.02 for CT ¼ 0.90 and 0.95 respectively). For oblique

branches, the null hypothesis was not rejected for either

value of CT (P ¼ 0.90 and P ¼ 0.88). Thus our data sup-

port the idea that spines were highly clustered on apical

terminal branches but not on oblique branches. Hereafter

we use the less conservative clustering threshold CT ¼
0.90 and yet show that significant differences exist in

attributes of clusters found on highly clustered and

sparsely clustered branches.

Spine cluster statistics
We report spine cluster statistics on the 152 apical

terminal branches, for the highly clustered and sparsely

clustered groups (Table 2). As expected, the percentage

of spines residing in clusters was greater for highly clus-

tered branches compared with sparsely clustered

branches (P < 0.006). However, the percentage of

spines residing in clusters in sparsely clustered

branches was similar to the percentage calculated from

all 1.4 million simulated branches with randomly spaced

spines (56.6%). The mean number of spines per cluster

was greater on highly clustered branches (P ¼ 0.02),

whereas the mean cluster length was smaller (P ¼
0.0037). The cluster density (number of clusters per

TABLE 1.

Numbers of Highly Clustered Branches vs. C-Score

Clustering Threshold

Apical terminal

branches (n ¼ 152)

Oblique branches

(n ¼ 128)

Threshold CT

Highly

clustered

branches P value

Highly

clustered

branches P value

0.9 22 0.049 9 0.90
0.95 14 0.02 4 0.88

Figure 6. Examples of typical highly clustered and sparsely clustered branches. Shown are xy-, yz-, and xz-projections of 35-lm segments

of a highly clustered branch (a) and a sparsely clustered branch (b). Spines classified as belonging in clusters are shown in pink; nonclus-

tered ‘‘singlet’’ spines are shown in black. c: Positions of spines on these branches, as the 1-D traversed distance along the dendritic cen-

terline. Clustered spines are shown in pink, singlet spines in black. Scale bars ¼ 5 lm.

TABLE 2.

Cluster Statistics in Apical Terminal Branches

Highly

clustered

Sparsely

clustered P value

Spines in
clusters (%)

69.51 6 5.08 53.82 6 8.1221 <0.0001

Spines per cluster 3.54 6 0.12 3.43 6 0.18 0.006
Cluster length (lm) 0.80 6 0.38 1.13 6 0.50 0.0037
Cluster
density (/lm)

0.35 6 0.14 0.20 6 0.11 <0.0001

Cluster occupancy 0.24 6 0.04 0.18 6 0.04 <0.0001
Spine density (/lm) 1.818 6 0.74 1.302 6 0.71 0.0021
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micrometer) was also larger on highly clustered

branches (P < 0.0001). This statistic can be misleading,

because the number of spines per cluster and cluster

length varied widely. Thus, we also measured spine

cluster occupancy, defined as the ratio of the total

length of all clusters on a branch to the branch length.

Cluster occupancy was greater on highly clustered

branches (P < 0.0001).

Figure 7 summarizes our findings on the density of

the three spine types (mushroom-shaped, stubby, thin)

in apical terminal branches. We report the spine type

density, equal to the number of each spine type per micro-

meter of branch length, for clustered and singlet (nonclus-

tered) spines. The density of clustered spines of all types

was significantly greater in highly clustered branches than

in sparsely clustered branches (Fig. 7a). On highly clus-

tered branches, the density of mushroom-shaped and

stubby clustered spines was nearly twice the density on

sparsely clustered branches. In contrast, the density of

mushroom-shaped, stubby, or thin singlet spines did not

differ between highly clustered and sparsely clustered

branches (Fig. 7b).

By definition, proportionally more spines reside in clus-

ters on highly clustered branches than on sparsely clus-

tered branches. The larger densities of clustered spines

of each type on highly clustered branches could be due

to clusters being more numerous in these branches but

also could be due to fundamental differences in the rela-

tive proportions of spine types within highly and sparsely

clustered branches. Thus, we reexamined our shape den-

sity results after controlling for the proportion of clus-

tered spines. After dividing the number of clustered

spines of each type by the total cluster length

(as opposed to the branch length), the densities of mush-

room-shaped and stubby clustered spines were still sig-

nificantly greater in highly clustered branches (Fig. 7c),

by 43% and 56% respectively. Likewise, as alternative sin-

glet shape densities, we divided the singlet spine count of

each type by the total branch length minus cluster length.

Still, there was no significant difference in the density of

singlet spines of any shape for highly clustered vs.

sparsely clustered branches (Fig. 7d), indicating that the

increase in mushroom-shaped, stubby, and thin spines on

highly clustered branches was concentrated in the

Figure 7. Density of spine shapes in highly and sparsely clustered branches. The figure shows the density of mushroom-shaped, thin, and

stubby clustered spines per unit branch length (a); singlet spines per unit branch length (b); clustered spines, normalized by the total

length of dendrite over which clusters reside (c); and singlet spines, normalized by the length of dendrite over which singlets reside (d).

Bars show the mean and standard error of the mean. Black and gray bars represent highly clustered (n ¼ 22) and sparsely clustered (n ¼
130) branches, respectively. *P < 0.05, **P < 0.01.
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clusters. Moreover, clusters on those branches had a

greater increase in the density of mushroom-shaped and

stubby spines than thin spines.

DISCUSSION

Neurons receive thousands of inputs and must inte-

grate them with millisecond precision. Models have

shown that neuronal processing tasks such as pattern

differentiation and memory retrieval and storage could be

enhanced substantially through nonlinear summation of

inputs on clustered synapses (Mehta, 2004; Govindarajan

et al., 2006). Empirical studies confirm that synapses

activated within individual dendrite branches can achieve

nonlinear summation of inputs (Larkum et al., 2009; for

review see Larkum and Nevian, 2008). A recent single-

synapse resolution study confirmed synchrony of network

activity in adjacent spines, suggesting that spatially local-

ized synapses are likely to group functionally (Takahashi

et al., 2012). Furthermore, it has been shown that

learning activity patterns that induce LTP preferentially

promote growth of new spines close to potentiated syn-

apses (De Roo et al., 2008), possibly leading to clustering

of functional synapses. Other experiments show that

neighboring synapses on a dendritic branch during LTP

induction can be coregulated (Harvey and Svoboda,

2007; Harvey et al., 2008; Govindarajan et al., 2011),

again implying that spines might possibly group within a

localized neighborhood. However, the existence of local-

ized synapse clusters on multiple branches of a neuron’s

dendritic arbor has never been established. We have

introduced a new method that analyzes spine locations

along dendritic branches, classifies whether individual

spines lay within clusters, and then quantifies the proba-

bility that the observed frequency of clusters occurred

randomly. Our results indicate that layer III pyramidal

neurons from area 46 of the monkey PFC do possess non-

random clusters of spines on apical terminal branches,

located preferentially in layers I and II and the upper part

of layer III, but not oblique branches, distributed within

the middle portion of layer III. We also show that the den-

sity of clustered mushroom-shaped and stubby spines is

twofold greater on dendrites on which prolific clustering

was found. We conclude that one or more systematic

biological processes are responsible for the observed

spine clusters.

Spine clustering in cortical pyramidal
neurons

The layer III neurons in this study were located in area

46, a key PFC region involved in working memory tasks

(Funahashi and Takeda, 2002). These tasks are short in

duration and require precisely timed communication with

other cortical regions. Thus, it is likely that efficient work-

ing memory processing would be facilitated by synaptic

clustering on apical terminal dendrites. Our morphologic

data were obtained during in vitro electrophysiological

characterization of neurons from cognitively tested adult

monkeys. This restricts our sample size but will allow us

to test for correlations of cognitive status with neuronal

structure and function as more data are collected. Even

so, for CT ¼ 0.90 and a ¼ 0.05, our study had sufficient

power to detect clustering that occurs twice as often as

random 91% of the time when it exists in oblique

branches and 97% in terminal branches (Cohen, 1988).

Thus we propose that the spine clustering that we

observed in apical terminal branches of these neurons is

biologically significant and that nonrandom spine cluster-

ing in oblique branches, if it does exist, is much less

common.

The present data were obtained without elicitation of

synaptic plasticity or a particular learning paradigm.

Spines in adult animals targeted during synaptic strength-

ening can be stable in vivo for days or even months (Kasai

et al., 2003). At the same time, many in vitro and in vivo

studies have established that a principal characteristic of

dendritic spines is that they are highly plastic structures

that appear and disappear and change morphological

properties under both normal and pathological condi-

tions. Thus, we propose that spine clusters can be

actively maintained over long time scales but may also be

highly plastic themselves.

In vitro approaches have been used previously to study

the fundamental characteristics of spine motility and

mechanisms underlying morphogenesis of spines, and

most if not all in vitro findings have been substantiated

with in vivo approaches (for a comprehensive review of

this topic see Yuste, 2010). Thus the analysis of neurons

that are filled during in vitro electrophysiological record-

ings has been used very extensively in the field. Indeed,

most of the seminal findings on dendritic spines have

been obtained from in vitro slice or more reduced neuro-

nal culture systems. That said, it is true that brain slicing,

a procedure that necessarily results in deafferentation

and disruption of the tissue, has been reported to result

in acute increases in spine number that stabilize after

approximately 2 hours (Kirov et al., 1999). This report,

which was limited to the hippocampus (so relevance to

neocortical neurons is not known), has implications for all

in vitro studies of spine number and morphology, yet

does not reduce the importance of in vitro data. The sig-

nificance of our finding of spatial clustering of spines—an

important and heretofore unappreciated capacity of corti-

cal neurons—is not reduced by the fact that neurons were

filled in vitro. In particular, we found that highly clustered

branches were concentrated in the apical terminal region
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and that the distribution of spine shapes differed on

highly clustered vs. sparsely clustered branches. It is

unlikely that these findings are due merely to a slicing

artifact.

Spine clusters were observed on both oblique and ter-

minal apical branches, although the frequency on oblique

branches was no different from what was expected by

chance. Interestingly, oblique dendrites of CA1 pyramidal

cells tend to have a lower threshold for generating local

voltage spikes than apical terminal dendrites (Gasparini

et al., 2004; Losonczy and Magee, 2006). Thus, we pre-

dict that prolific spine clusters on apical terminal

branches of neocortical pyramidal cells facilitate dendri-

tic spikes in order to integrate such distal synaptic input

at the soma (Larkum et al., 2009). In contrast, perhaps

neocortical oblique branches rely less on synapse cluster-

ing to regulate the ability of a branch to generate a

voltage spike, instead using other mechanisms such as

N-methyl-D-aspartate receptor-dependent regulation of

A-type Kþ channels found in CA1 (Losonczy et al., 2008).

Regulation of A-type Kþ channels and spine clusters

within a dendrite branch might even occur simultaneously

to tune the level of nonlinear input summation. Also, the

apical terminal dendrites of layer III neurons are inner-

vated mostly by inputs from other cortical regions as well

as thalamic and subcortical inputs, whereas proximal api-

cal dendrites, including proximal oblique branches,

receive inputs mostly from layer IV spiny stellate neurons

and from local cortical neurons (Spruston, 2008). This

suggests a likely correlation between laminar input type

and the presence of spine clusters.

Relevance of spine shape
The relationship between spine shape and function has

been studied widely. Thin spines change into larger and

more stable mushroom-shaped spines as the postsynap-

tic density and associated spine head volume increase

(Kasai et al., 2010). It has been proposed that, during

learning, thin spines are recruited to undergo LTP induc-

tion and are transformed subsequently into memory-

storing mushroom-shaped spines (Bourne and Harris,

2007).Thus, the high density of mushroom-shaped spines

found specifically within clusters on highly clustered

branches (see Fig. 7) may be functionally significant,

particularly in the context of differences in inputs to the

distal tufts of dendrites, likely richer in thalamocortical

and subcortical afferent axons compared with the inputs

to the oblique dendrites (secondary and tertiary branch-

ing levels mostly) in the middle portion of layer III that

contains a larger proportion of corticocortical afferents

(Hof et al., 1995; Duan et al., 2002; Spruston, 2008).

Also, because synaptic currents tend to be largest on

stubby spines (Segal, 2010), the significant increase in

the density of clustered stubby spines seen here further

supports our prediction that nonlinear summation is

enhanced on highly clustered branches and indicates

that clustered stubby spines may act in concert as hot

spots for dendritic depolarization. This suggests a wider

role for stubby spines than typically thought (Perez-Vega

et al., 2000; Diamond et al., 2006; Bourne and Harris,

2011). Our findings that the proportion of specific spine

subtypes differs between highly clustered and sparsely

clustered dendrites are particularly interesting because

our clustering algorithms made no use of spine shape

information.

Future applications of the algorithm
From an algorithmic perspective, several clustering

methods could be used to locate spine clusters along a

dendrite branch. A greater challenge is to establish a

clustering measure that determines the probability that

clusters occur purely by chance but is uncorrelated with

spine density. The C-score uses statistical data random-

ization to meet both these criteria. In simulated data with

randomly spaced spines, the C-score is independent

(consequently uncorrelated) of spine density (Fig. 5a),

but, in the real data, spine density and C-score were

weakly correlated (Fig. 5b), further evidence that the clus-

tering observed experimentally has a nonrandom and sys-

tematic cause.

With sufficient morphologic data, our C-score could

test a variety of hypotheses on spine clustering. Varia-

tions in the degree of spine clustering across neuronal

populations and multiple brain regions could help to deci-

pher connectivity patterns in neuronal circuits (Chklovskii

et al., 2004). Differences in spine clustering between per-

fused tissue and acute slices (Kirov et al., 1999) could

also be assessed. A previous study showed that large

spines were farther from one another than smaller spines

(Konur et al., 2003); this could be tested in our data by

analyzing spine volumes, which also could be used to

infer synaptic strength (Matsuzaki et al., 2004; Kopec

et al., 2006; Harvey and Svoboda, 2007; Zito et al.,

2009). The C-score could also quantify the level of spine

clustering before and after LTP induction (Harvey and

Svoboda, 2007; De Roo et al., 2008) or other learning

paradigms. Finally, dendrites and spines undergo sub-

stantial morphologic dystrophy in aging (Cupp and

Uemura, 1980; Uemura, 1980; de Brabander et al., 1998;

Peters et al., 1998, 2001; Kajkowski et al., 2001; Duan

et al., 2003; Dickstein et al., 2007; Kabaso et al., 2009;

Hara et al., 2011) and in neurodegenerative disorders

(Hof et al., 1995; Anderton et al., 1998; Hao et al., 2006,

2007; Knobloch and Mansuy, 2008; Dumitriu et al., 2010;

Luebke et al., 2010; Rocher et al., 2010; Bloss et al.,

2011). If synaptic connections were to reorganize in an

Spine clustering in neurons: morphologic evidence
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attempt to compensate for these morphologic changes,

spine clusters might become more prominent in one

region of a neuron than in another. The data presented

here provide an important baseline for testing such

hypotheses.
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